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ABSTRACT

During spring 2016 the Probabilistic Hazard Information (PHI) prototype experiment was run in the

National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) as part

of the Forecasting a Continuum of Environmental Threats (FACETS) program. Nine National Weather

Service forecasters were trained to use the web-based PHI prototype tool to produce dynamic PHI for

severe weather threats. Archived and real-time weather scenarios were used to test this new paradigm

of issuing probabilistic information, rather than deterministic information. The forecasters’ mental

workload was evaluated after each scenario using the NASA-Task Load Index (TLX) questionnaire. This

study summarizes the analysis results of mental workload experienced by forecasters while using the PHI

prototype. Six subdimensions of mental workload: mental demand, physical demand, temporal demand,

performance, effort, and frustration were analyzed to derive top contributing factors to workload. Average

mental workload was 46.6 (out of 100, standard deviation: 19, range 70.8). Top contributing factors to

workload included using automated guidance, PHI object quantity, multiple displays, and formulating

probabilities in the new paradigm. Automated guidance provided support to forecasters in maintaining

situational awareness and managing increased quantities of threats. The results of this study provided un-

derstanding of forecasters’ mental workload and task strategies and developed insights to improve usability of

the PHI prototype tool.

1. Introduction

The severe convective weather warning system in the

United States has maintained the same weather warning

paradigm since the first successful issuance of a tornado

warning in 1948 (Meyer 2003), comprising watches,

warnings, and advisories. The current warning system

comprises 122 National Weather Service (NWS) offices,

and their affiliated national centers, continuously ana-

lyzing radar, satellite, lightning, surface observations,

and model data to produce watches and warnings for

severe thunderstorms, tornadoes, floods, hail, and other

extremeweather phenomena (Friday 1994). The current

warning paradigm is static and conveys the location of a

threat via a graphical polygon and city–town location

text. Polygons can be trimmed as threats evolve until

expiration of duration, and current directives and prac-

tice indicate that at least a few updates should be issued

(Stern 2020).

The advancement of the weather warning methods

requires a new means to graphically represent and com-

municate threat information to users. The ProbabilisticCorresponding author: Joseph J. J. James, jjj27@zips.uakron.edu
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Hazard Information (PHI) object is the current mecha-

nism being evaluated to communicate accurate and

timely information regarding specific meteorological

threats (Kuhlman et al. 2008; Stumpf et al. 2008;

Karstens et al. 2018).

Recent advances in algorithm development make it

possible to automatically locate severe weather hazards

spatially, and thus graphically. Using a new suite of

fused radar, environment, and statistics, these hazards

can be tracked and projected into the future, and while

accounting for uncertainty in those projections, used to

create a PHI object (polygon, freehand or ellipse).

These added capabilities, including probabilistic infor-

mation, were put to the test as an improvement to de-

terministic warning polygons for both forecasters and

end users, such as emergency managers and TV broad-

casters (Karstens et al. 2018).

a. The PHI prototype tool

Within the PHI prototype tool, there are both auto-

mated and manual PHI objects available to the fore-

casters for severe thunderstorm and lightning threats

(tornado threats do not have automated guidance

available). Forecasters have the option to either manu-

ally create new PHI objects, modify any of the attributes

(hazard, severity, motion, duration, shape, location,

time, and forecasted probability trends) of an existing

object, or block an automated object (Karstens et al.

2015). Information communicated by the PHI object

include current and future threat probability, time

of arrival and departure, threat type, and severity of

threat. Another attribute of PHI objects is the discus-

sion box attached to each PHI object, where forecasters

can comment or discuss their reasons for assigning

certain PHI attributes or comment on storm develop-

ment. PHI objects can be automatically created by

software (severe thunderstorm and lightning) and can

be manually created, modified, and blocked by fore-

casters (Karstens et al. 2015). Radar-derived PHI ob-

jects will automatically track a storm even if it begins at

below current warning threshold levels. According to

the NWS, warning thresholds for severe thunderstorms

are 25.7m s21 for wind and 2.5 cm for hail; for tornado

warnings, radar detected or a spotter report.

Severe thunderstorm PHI objects are based on the

ProbSevere model (Cintineo et al. 2014, 2013, 2018),

developed by the National Oceanic and Atmospheric

Administration (NOAA) and the Cooperative Institute

for Meteorological Satellite Studies (CIMSS). ProbSevere

data are computed from a compilation of numerical

weather prediction (NWP), geostationary satellites,

ground-based radars, and cloud-to-ground lightning,

which identifies areas of convection and calculates

the probability that a convective area will produce se-

vere weather. The model forecasts a probability of se-

vere weather for a 90-min duration.

Lightning PHI objects are developed using a random

forest algorithm trained with Multi-Radar/Multi-Sensor

(MRMS), near-storm environment, and both in-cloud

and cloud-to-ground lightning data from multiple light-

ning detection networks (Meyer et al. 2016; Calhoun

et al. 2018).

b. Mental workload

Mental workload is the cognitive demand a system

or task imposes on the user (Wickens et al. 2004).

Mental workload analysis is important in system or

product design to ensure manageable workload for

users. Mental workload is a relative measure used to

determine differences between similar designs or

changes in design. Properly assessing the mental work-

load and implementing design changes into a software

system may increase the system usability. If the mental

workload is too high, the user may feel fatigued and

quality of work will decrease. If the workload is too low,

the user will not be as engaged in the process and may

lose situational awareness.

This study implements the NASA Task Load Index

(NASA-TLX), one of the most widely used and ac-

cepted method to measure mental workload (Hart and

Staveland 1988; Hart 2006). The NASA-TLX has been

used across many industries and is accepted as an ac-

curate and reliable tool to measure mental workload

(Akyeampong et al. 2014; Finomore et al. 2013). The

NASA-TLX has been used to evaluate driver workload

in autonomous vehicle systems (Hooey et al. 2018) and

to manage workload of robotic surgery operators and

increase efficiency (Walters and Webb 2017). In addi-

tion, the NASA-TLX has been used to evaluate men-

tal workload in implementing a conflict detection and

resolution advisory system for air traffic controllers

(Trapsilawati et al. 2016). Other applications include

control interface designs in nuclear power plants (Yan

et al. 2017) and evaluating mental workload in virtual

environments in comparison to traditional environments

(Burigat and Chittaro 2016).

The goal of this study is to understand forecasters’

tasks in issuing PHI objects, analyzing mental workload

experienced by forecasters and summarizing any task

strategy that forecasters’ develop in managing PHI

objects.

2. Methodology

The 2016 PHI prototype experiment implemented

practitioners’ cycles (Hoffman et al. 2010), which is an
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iterative design process that allows for rapid product

improvement. After each week of testing, improve-

ments were made to the system for the next week of

testing, thus allowing researchers to analyze quickly how

improvements affected aspects of the system and overall

usability.

a. Hazardous Weather Testbed design

The 2016 Probabilistic Hazard Information (PHI)

prototype experiment was conducted 9 May–10 June

2016 at the National Weather Center in Norman,

Oklahoma. The experiment took place in theHazardous

Weather Testbed (HWT), a specifically designed test

laboratory to complete experimental testing and devel-

opment of new weather warning products and systems.

The testing area consists of six dual 27-in. monitor Linux

workstations.

During the experiment, Forecasters used the PHI

prototype tool in conjunction with the Advanced

Weather Interactive Processing System (AWIPS II)

(Fig. 1). AWIPS II provides the standard radar displays

and information that the forecasters use currently in

operation at weather forecast offices (WFOs). Figure 1

shows the forecaster workstation with AWIPS II on the

left screen and the PHI tool on the right screen (Fig. 3).

Forecasters used the PHI tool with automated guidance

to create and manage PHI objects to convey threat in-

formation on tornado, severe thunderstorm, and light-

ning threats. Threat objects produced by forecasters are

populated in the Enhanced Data Display (EDD) and

displayed in another room to the emergency managers

and media broadcasters for decision support (Wolfe

2014) (Fig. 2). The EDD tool is a web-based tool created

to display and provide detailed PHI information to the

end users. This study focuses on the forecaster side of

the experiment, for understanding how forecasters use

the PHI prototype tool to produce and manage PHI

objects.

b. Procedure

On the first day of each week of the experiment

participants were presented with an overview of the

Forecasting A Continuum of Environmental Threats

(FACETs) project (Rothfusz et al. 2015) and tutorials

for the PHI prototype tool. At the end of the first day,

participants completed a hands-on training session with

the PHI tool. Days 2, 3, and 4 were offset shifts from

1300 to 2200 local time (LT), to take advantage of the

favored time for severe weather events. The first sce-

nario each day was an archived case specifically chosen

to test the capability of the PHI tool. The second session

of each day utilized real-time severe weather in the

CONUS. NASA-TLX surveys were completed after

each archived or real-time weather event. Guided group

debriefs took place after the event. The guided sessions

covered topics of interest that resulted from forecaster

decisions or situations that happened during the previ-

ous weather event. For each case, three forecasters were

in charge of three types of threats. These responsibilities

would rotate each day so each forecaster worked on all

FIG. 1. 2016 PHI prototype hazardous weather experiment setup.
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three hazards over the course of the week. Following

3 days of PHI scenarios, researchers conducted a com-

prehensive guided discussion regarding the PHI tool

interface, creation, and management of PHI objects,

forecaster thoughts on the weather warning paradigm

shift, and the logistics of the experiment. Throughout

the week, each forecaster completed three archived

cases and four real-time severe weather events. The

duration of each event varied from 1.5 to 2 h.

c. Participants

The PHI prototype experiment was conducted for

three weeks. Three new forecasters participated each

week. Participants were chosen from a pool of applicants

FIG. 2. AWIPS II four panel display of the HWT forecaster station. Forecasters had the opportunity to set up

procedures as desired in AWIPS II before beginning a case. This panel varied for each forecaster and could be

adjusted depending on the environmental conditions of the case.

FIG. 3. PHI tool panel of theHWT forecaster station. (a) TheHazard InformationDisplay (HID) allows forecasters to select PHI object

attributes such asmotion vector, probability trend, threat attributes, and add discussion. (b) The PHI tool spatial display allows forecasters

to see PHI objects overlaid with reflectivity or velocity products on a map. Users can use the cursor to manipulate object vertices and

motion vectors by dragging the PHI object. (c) The console allows forecasters to scroll through past time up to current and view all the start

and finish times of PHI objects they have edited.
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within the NWS. Considerations in forecaster selection

included: region, position, warning experience, and

motivation for participation. Nine forecasters par-

ticipated: seven men and two women. The average

participant age was 42.7 years. Participants had an av-

erage of 13.9 years of warning experience, ranging from

2 to 201 years and represented 8 different weather

forecast offices.

d. PHI prototype tool design

The PHI prototype was developed as a web browser-

based tool (Fig. 3) (Rothfusz et al. 2014; Karstens et al.

2015). This interactive tool allowed users to create and

manage PHI objects for tornado, severe thunderstorm,

and lightning threats. A PHI object is a geographi-

cally outlined area, within or around a storm, which

represents a threat. The PHI tool control panel (area B

in Fig. 3) gives the forecaster options to describe the

threat motion and duration, probability trend, action

level, severity, and confidence. There is also a discussion

box for additional comments and information. The tool

includes an interactive radar map (area B in Fig. 3) on

the right side to help create, modify, and manage PHI

objects. On the bottom of the PHI tool screen, the

console (area C in Fig. 3) allows forecasters to track PHI

objects they are managing and see when the objects

will end.

e. Automated guidance

The PHI tool used automated guidance fromProbSevere

and ProbLightning to create and track PHI objects,

along with providing a probability level for each object

(Karstens et al. 2015). The 2016 PHI prototype tool

provided automatic object creation and tracking for

severe thunderstorms and lightning threats.

The PHI tool allowed forecasters to take control of

aspects of automated PHI objects as they deemed nec-

essary. If the forecasters did not believe the PHI objects

accurately represented the threat, forecasters could

choose to take over all aspects of an automated object or

just override aspects that were not accurately repre-

senting the hazard. As described by Karstens et al.

(2018), there were four levels of automation that the

forecaster could use:

d Level 1: Forecaster generates all probabilistic fore-

casts by manually creating a PHI object, with no

involvement of automated guidance.
d Level 2: Forecaster optionally uses automated guid-

ance to generate probabilistic forecasts. Automated

guidance is running, but all aspects of a PHI object,

including probability, size and shape of object, and

motion vector can be overridden.

d Level 3: Forecaster partially overrides automation.

Automated guidance is running, and all attributes

except the mechanical attributes (size, shape, motion

vector, and duration) of a PHI object can be overridden.
d Level 4: Forecaster observes automatic probabilis-

tic forecast generation without any intervention.

Automated guidance is running and is generating

probabilistic forecasts.

f. Description of archived cases

Three archived cases were selected for use during the

PHI experiment. The severe weather situations were

chosen to present extreme and marginal weather con-

ditions that help researchers to understand the capa-

bilities and limits of the PHI prototype tool and provide

challenges to the forecasters.

Case 1: 6 May 2015, in Oklahoma City, Oklahoma.

The situation included multiple large severe super-

cells with tornadoes (Fig. 4).

Case 2: 31 March 2016, in Huntsville, Alabama. The

situation included merging supercells with multiple

tornadoes (Fig. 5).

Case 3: 24 June 2015, in Atlanta, Georgia. The situ-

ation includedmany dispersed pulse storms (Fig. 6).

g. Instruments and analysis

1) TASK ANALYSIS

Hierarchical task analysis (HTA) (Stanton et al. 2013)

was used to develop a task model to evaluate the per-

formance of PHI object creation and management.

The PHI process was broken down to basic elemental

tasks that forecasters needed to complete to create or

update a PHI object. Analysis was performed to mea-

sure and analyze the time forecasters spent creating and

updating objects as well as the length of time between

updating objects.

Video recording of each session was completed using

a built-in computer function, RecordMyDesktop, Ver

3.8 (Varouhakis 2007), to record each screen. Tripod

mounted video cameras with microphones recorded

an ‘‘over the shoulder’’ view and forecaster discussion

during the experiment. Screen recordings were anno-

tated with usability software (Morae by TechSmith, Ver

3.3.4), based on forecaster interaction with the PHI

tool. Cases analyzed included nine sessions for three

hazards, three different cases, and nine different fore-

casters. All actions and decisions by the forecaster dur-

ing PHI creation and management were annotated.

Each PHI object is designated a unique numerical

identifier that remains the same as the object is tracked,

AUGUST 2020 JAMES ET AL . 1509

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/16/21 08:48 PM UTC



updated, and managed by the forecaster. A forecaster

was able to issue updates to the same PHI object as

often as necessary. The resulting analysis output was

the number of unique PHI objects the forecaster in-

teracted with, time spent interacting with each object

per update/issue, and the number of total PHI objects

or updates issued. A process flow was developed for

automated objects and manual PHI objects based on

the top-down design of the PHI tool (Fig. 7). The PHI

tool interface was designed to provide a workflow

similar to current warning software used by fore-

casters. During the experiment, researchers were on

hand to answer questions and troubleshoot issues

with PHI tool, as well as make suggestions for PHI

tool usage.

2) NASA-TLX MENTAL WORKLOAD

INSTRUMENT

The NASA-TLX workload index is a questionnaire-

based workload rating tool (Hart and Staveland 1988).

The tool measures six subdimensions of mental work-

load: mental demand, physical demand, temporal

demand, performance, effort, and frustration. Mental

demand is how much mental activity a user requires to

complete tasks, including thinking, decision-making,

remembering data, or completing calculations. Physical

demand defines how much the user has to move the

mouse, click, and bring up different displays. Temporal

demand is how much time pressure the user felt to get

tasks completed. Performance defines how successful

the user felt they were at accomplishing goals or tasks.

Effort gauged how hard they had to work to accomplish

a level of performance. Frustration includes how stressed,

annoyed, or irritated the user felt while completing a

task. The prompts for each subdimension were tailored

for the experiment.

The analysis of workload includes a weighting di-

mension used to calculate an overall workload score.

The questionnaire was modified slightly by adding a

question: ‘‘What made it so?’’ after each subdimension.

Forecasters wrote optional text responses to provide

further explanation as to what events or situations con-

tributed to their workload score. The raw scores of the

mental workload ranged from 0 to 100, with 0 indicating

extremely low workload and 100 denoting extremely

high. The ratings were averaged from all the archived

sessions for each of the six subdimensions of workload.

The pairwise comparison among subdimensions pro-

duced the importance factors, which were averaged for

each subdimension.

FIG. 4. Archived Case 1 was selected from 6 May 2015, in Oklahoma City, OK, featuring multiple large supercells with tornadoes.

The PHI tool is displayed with a U.S. map background showing cities and roads. The radar reflectivity layer is shown with orange

lightning PHI objects overlaid. Shown in the inset (denoted by A), each PHI object has an associated three-digit number and a

probability percentage.
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3) THEMATIC ANALYSIS

Thematic analysis is an analysis method often used

in psychology for reporting patterns and themes within

sets of qualitative data (Braun and Clarke 2006; Guest

et al. 2012; Boyatzis 1998). End of week discussion and

NASA-TLX comment responses were analyzed for

their qualitative content. Patterns and themes were

then developed for topics of common concern among

participants.

3. Results and analysis

a. Task analysis

The task analysis results are summarized in Table 1.

Task analysis was completed only on archived case. The

‘‘number of objects’’ is the average number of unique

objects the forecasters ‘‘interacted with’’ during a single

scenario. ‘‘Interacting with’’ means a forecaster made a

decisive change in an object characteristic, probability

trend graph, or text. The ‘‘number of updates’’ is the

average total number of updates issued by the forecaster

during each scenario. This includes all updates issued

from the forecaster, from manually created or auto-

matically created objects. The ‘‘average time per issue’’

is the average duration (in seconds) that the forecaster

interacted with an object prior to issuing an object or

updating an object and clicking the ‘‘issue’’ button.

The results show lightning as having the greatest

number of unique hazard objects per case, with an av-

erage of 14.5 objects and an average time to update of

189.2 s. Forecasters issued the least number of tornado

objects with an average of 4.3 objects. However, tornado

objects required an average of 302.5 s to update. The

tornado objects were not created by automation and

tornado objects were targeting a much smaller spatial

area than severe thunderstorm or lightning objects.

Instead of a polygon, forecasters were using circles

and ellipses to target individual areas of rotation and

tornadic development. Severe thunderstorm objects

required the least amount of time to update, with ap-

proximately 163 s per update.

Data points that were repetitive or containedmistakes

were removed. Sometimes a forecaster would select an

option, and then almost immediately change the option

to another value; for example when deciding wind speed

or hail size. The time stamp on the latest occurring de-

cision in a step is the time used to calculate a particular

step duration. A detailed task analysis was carried out

to account for all available decision steps (Fig. 7). The

aggregated time steps were averaged for all PHI object

creation and update instances with regard to hazard.

FIG. 5. Archived Case 2 was selected from 31Mar 2016, in Huntsville, AL, featuring merging supercells with tornadoes. The PHI tool is

displayed with a U.S. map background showing cities and roads. The radar reflectivity layer is shown with a red tornado PHI object

overlaid. Shown in the inset (denoted by A), each PHI object has an associated identification number and a probability percentage.
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Forecasters updated aspects and attributes of PHI

objects as they determined to be necessary. If an at-

tribute was not updated, the previous attribute pa-

rameter was carried over, so some instances of PHI

object updates did not include or skipped some steps.

These instances were not accounted in the average for

that process step time. The average represents the

average time of all instances of forecaster interaction

with a particular action.

Severe thunderstorm and lightning follow a similar

time step path (Fig. 8); however, tornado PHI objects

took 100–150 s longer to produce. Drawing the proba-

bility trend and deciding action level for tornado objects

each took longer than 70 s. The same two steps in pro-

ducing lightning and severe thunderstorm information

required less than 20 s for probability trend chart and

less than 15 s for deciding action level.

In case debriefs, forecasters stated they could com-

fortably manage 4–5 PHI objects of tornado, lightning,

or severe thunderstorm hazards at a time. In general,

tornado and severe thunderstorm objects were within

the range of manageable object numbers; however,

there were significantly more objects capable of pro-

ducing cloud-to-ground lightning than either severe

or tornado. The average unique number of objects a

forecaster interacted with during a case reflects the

difference, ranging from 4.3 objects with possible tor-

nadoes to 7.3 severe thunderstorm objects and 14.5 ob-

jects with a lightning threat per case (Table 1). The

automation created and managed more objects than

the forecaster interacted with, forecasters prioritized

interaction with objects with a higher probability of

producing severe weather or cloud-to-ground lightning.

The number of updates per PHI object varied, 2.9 for

severe thunderstorm, 2.1 for tornado, and 1.5 for tor-

nado. Forecasters would issue several updates on one

PHI object over the course of the scenario or sometimes

just one update depending on the weather development

or forecaster workload, there was no specific guidance

given to forecasters on how often or when to update

objects.

b. Mental workload analysis by subdimensions

NASA-TLX data were analyzed using the average of

the raw score and calculation of the importance of each

of the six subdimensions of mental workload. The im-

portance factor was calculated using 15 pairwise com-

parisons. Each subdimension was compared to each of

the other subdimensions and overall importance was

calculated for each subdimension. The mental workload

level and relative importance factors are shown for each

subdimension (Fig. 9).

FIG. 6. Archived Case 3 was selected from 24 Jun 2015, in Atlanta, GA, featuring dispersed pulse storms. Radar reflectivity is shown

displayed over a road and citymap. Yellow severe thunderstormPHI objects are shown alongwith a white PHI object (denoting a blocked

object) and a blue PHI object, showing a suggested PHI object from the automated guidance. Shown in the inset (denoted byA), each PHI

object has an associated identification number and a probability percentage.
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FIG. 7. 2016 PHI object creation/update matrix and average duration. The time for each decision step in seconds

for each hazard (severe thunderstorm, tornado, and lightning) is shown. The workflow begins at the top of the chart

with ‘‘Motion/Duration’’ and ends with ‘‘Discussion’’ at the bottom of the chart.
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The mean mental workload was 49.9 [out of 100,

standard deviation (std dev): 28.1], with a range of 70.8.

The most mentioned contributing factors for increased

workload in working with the PHI prototype tool in-

cluded learning to use automated guidance, number of

objects/storms to keep track of, multiple displays, and

formulating probabilities. An increased standard devi-

ation is reflective of a variety of severe weather event

cases and variation in forecaster experience.

Summaries of each of the six subdimensions of mental

workload are shown as follows:

1) MENTAL DEMAND: AVERAGE: 64.9, STD DEV:
25.6, RANGE: 90

Working with automation was cited as one of the

major contributors to mental demand. Forecasters

stated that the automation, for severe thunderstorm and

lightning products only, gave a good first guess or indi-

cation of an area to prioritize. Forecaster 6 stated, ‘‘The

auto detected objects for severe potential helped in

finding areas of concern and also were generally good

with the motion and speed of the cells. This helped save

time and thought.’’ The object tracking was generally

good, which reduced workload. However, if the auto-

mation and tracking were not very accurate, adjusting

tracking required higher mental demand because the

forecaster would have to take over the object manually.

This happened frequently during pulse storm situations.

Forecasters also attributed increased mental demand to

unfamiliarity with the new paradigm and PHI tool.

Forecasters stated higher workload is normal during

severe weather operations.

2) PHYSICAL DEMAND: AVERAGE: 58.6, STD DEV:
28, RANGE: 92

A significant amount of mouse clicking and moving

between multiple monitors contributed to physical de-

mand. The PHI tool required a lot of clicking and

selecting many options to produce PHI. Forecasters also

noted that workload was increased when there were

larger numbers of objects and they had to click on each

one to review the object details. Forecaster 6 explained

his workload rating as, ‘‘Physical demand was not too

bad. Tool was easy to use and manipulate for the most

part. It wasn’t anymore (sic) difficult than conventional

FIG. 8. Task-time analysis for respective hazard PHI object creation. Object is initiated at

‘‘modify,’’ with time equals zero and ends with the forecaster selecting ‘‘issue.’’

TABLE 1. Task analysis results of PHI objects.

Hazard type

Severe

thunderstorm Tornado Lightning

No. of objects 7.33 4.3 14.5

No. of updates 21.5 9 21.5

Updates per object 2.9 2.1 1.5

Avg time per update (s) 163 302.5 189.2

Frequency of

update (min)

5.5 13.3 5.5
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warning.’’ Another participant attributed the physical

workload to adjusting the shape and motion of the PHI

objects. Forecaster 7 commented that, ‘‘The prototype

page requires a significant amount of mouse clicks.

Trying to change a shape or adjust a motion can be a

difficult task and occasionally requires one to start over.’’

3) TEMPORAL DEMAND: AVERAGE: 49.5, STD
DEV: 24, RANGE: 86

The number of objects monitored was the main con-

tributing factor to temporal demand. Forecasters stated

that the automation assisted in tracking and monitor-

ing many different PHI objects. Forecaster 9 stated,

‘‘the pace was busy to brisk and did get a bit frantic at

times as I tried to correlate incoming reports into the

probs as multiple storms became tornadic around the

same time.’’

4) PERFORMANCE: AVERAGE: 25, STD DEV: 16.7,
RANGE:70

The factors that contributed to performance were the

realization of using the new PHI tool to forecast events

accurately, address all important PHI objects, and

provide increased lead time. (Note a lower rating in

this subdimension corresponds to better performance.)

Forecaster 6 commented, ‘‘I feel that, in the time al-

lowed, that (sic) I was able to warn on most of the sig-

nificant severe storms. The PHI automated shapes

helped with this (showing areas of concern, severe

probabilities) and the relative ease and quickness of is-

suing the warnings. In a real event, if we had sectorized

the CWA to allow me to focus on fewer storms, then I

think I would have been able to put it as a 10 or 0.’’

5) EFFORT: AVERAGE: 63.1, STD DEV: 27.3,
RANGE: 91

The majority of effort was contributed to finding a

location on a different display for the PHI tool and the

radar display, due to a lack of geographic correspon-

dence between displays. Other contributing factors were

determining the probabilities and tracking of PHI ob-

jects. Forecaster 5 stated, ‘‘I felt my effort was high,

primarily mental, to be situationally aware, interrogate

storms, create warning in PHI, and to provide descrip-

tive updates on why I was putting out the warnings.’’

6) FRUSTRATION: AVERAGE: 38.5, STD DEV: 21.5,
RANGE: 90

Frustration was caused by learning and using the new

PHI tool. Forecaster 1 stated, ‘‘the frustration was not

with accomplishing the tasks and making the decisions,

it was with the whole shift in thinking and adjusting to a

newer way of doing things in severe mode.’’ Forecasters

felt especially frustrated when the automation did not

produce the PHI object they wanted. When a forecaster

manually took control of an object, they were frustrated

that they had to maintain that object from that point

forward.

FIG. 9. 2016 PHI prototype experiment overall mental workload. The width of the bars in-

dicates the importance of workload subdimension. The red line shows the overall average

workload score for the experiment. Standard deviations are shown for each subdimension.
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c. Mental workload analysis by hazards

Figure 10 shows workloads for each hazard type.

Severe thunderstorm and lightning hazards resulted in

workload averages of 44 and 47, respectively. Average

workload for tornado hazard was 58.

1) TORNADO

The average mental workload for working on tornado

PHI objects was 58 out of 100 (std dev: 23.3). No au-

tomation was implemented in the tornado PHI crea-

tion and management process. Forecasters attributed

increased workload for tornado over other hazards to

increased life-threatening impacts. Tornadoes could

develop and touch down quickly and impact a smaller

area, thereby requiring continuous monitoring. Therefore,

forecasters had to be more diligent in interrogating the

velocity products to produce short-term forecasts. The

tornado PHI objects that forecasters were creating were

often circles or ellipses, capturing the areas of rotation.

The areas covered by the tornado PHI objects were

much smaller than traditional tornado warnings areas,

and often targeted individual velocity couplets.

2) SEVERE THUNDERSTORM

The average mental workload for working on severe

thunderstorm PHI objects was 44 out of 100 (std dev:

23.2). Severe thunderstorm PHI had automated objects

based on the ProbSevere algorithm. Severe storms

did not have the same critical impacts as tornadoes.

However, hail and high winds were still a concern.

Severe storm development was more apparent and large

cells were easier to interrogate for producing longer-

term forecasts, in the 30–90-min range.

3) LIGHTNING

The average mental workload for working on light-

ning PHI objects was 47 out of 100 (std dev: 20.2).

Lightning PHI objects used trained algorithms to create

automated objects. Lightning introduced a new threat

for forecasters to produce PHI objects because fore-

casters do not issue warnings for lightning. Other chal-

lenges included situations where cloud-to-ground (CG)

lightning was not always contained within automated

objects, and it was unclear to the forecaster if the goal

was to contain every single CG strike or contain a per-

centage of CG strikes within an object.

d. Mental workload analysis by cases

1) CASE 1: MULTIPLE LARGE SUPERCELLS WITH

TORNADOES

The average mental workload for Case 1 (Fig. 11) was

39.2 (std dev: 27.5) for severe thunderstorms, 72.1 (std

dev: 18.4) for tornado, and 57.5 (std dev: 26.7) for

FIG. 10. Average mental workload by hazard type. The figure shows average workload for

lightning, severe thunderstorm, and tornado. The whiskers denote standard deviation.
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lightning (Table 2). Forecasters were challenged to in-

terrogate and assess probability and threat attributes

for multiple large supercells with associated tornado

threats. Forecasters were comfortable increasing initial

probabilities higher than the automated guidance be-

cause the storms were well developed and likely to

continue. Forecasters were unsure how to determine

future development of probability over time. This led

to frequent updates of the probability trend graph.

Forecasters often used a bell curve probability trend

prediction for future probabilities (the default prob-

ability trend is a linear decrease from the current

ProbSevere probability).

2) CASE 2: MERGING SUPERCELLS WITH

TORNADOES

The average mental workload for Case 2 (Fig. 11) was

44.8 (std dev: 22.9) for severe thunderstorms, 62.2 (std

dev: 26.7) for tornado, and 57.5 (std dev: 28.1) for

lightning (Table 2). Forecasters were challenged with a

large developed supercell with embedded tornadoes and

supercells merging with other storms. The merging of

supercells required forecasters to maintain awareness

of the automation. When the automation merged two

storm objects of the same type, the automation would

either keep only one object number or create a new

object number. There was no notification when this

would happen. A forecaster could be working in another

storm area and come back to check up on the objects

they previously worked on and found that the object had

been merged into a new object. This situation was very

frustrating for forecasters, especially when they had

adjusted or modified a specific object. As a result, a blue

suggestion object, as seen in Fig. 12, was developed to

inform forecasters that the automation wanted to merge

or in some cases split an object and the blue object would

represent the proposed action. Forecasters could then

accept or block the suggested blue object. If the fore-

caster accepted the suggested object, they could link it to

the previous object that they worked on to carry over the

threat information and storm history.

3) CASE 3: DISPERSED PULSE STORMS

The average mental workload for Case 3 (Fig. 11) was

48.1 (std dev: 35.3) for severe thunderstorms, 39.8 (std

dev: 27.6) for tornado, and 38.9 (std dev: 18.0) for

lightning (Table 2). The case challenged forecasters with

widespread, pulse thunderstorms where small storms

rapidly developed and were capable of producing cloud-

to-ground lightning and strong winds associated with

microbursts before quickly dissipating. The tornado

threat was not a critical feature of this weather scenario.

After the initial triage, forecasters had to frequently

retriage to pick up any rapidly developing storms.

Forecasters used traditional radar interrogation methods,

but also used the automated probabilities fromProbSevere

FIG. 11. Mental workload by hazard type and case. Whiskers show standard deviation.
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and ProbLightning to triage storms. Forecasters could

quickly scan themap and see if any storms had increased in

probability and needed attention. Due to the short-lived

nature of storms, forecasters often had to adjust object

duration and end objects early.

4. Discussion

a. Mental workload

The overall mental workload from the NASA-TLX

was an average of 49.9 (out of 100) with higher workload

assessed for the subdimension of mental demand, 64.9,

and effort, 63.1. The average workload was not exces-

sively high to cause concern, as it is similar to the aver-

agemental workload based on ameta-analysis of mental

workload ratings reported in 237 publications (Grier

2015). Forecasters had not used PHI prior to the testbed,

thus some of the higher workload could be attributed to

unfamiliarity with the process.

Mental demandwas one of the workload subdimensions

that resulted in higher overall mental workload. When the

forecasters took over the objects completely, the number

of tasks they had to complete to issue an update to PHI

increased. Increasing the reliability of automation could

reduce the mental workload level during severe weather

operations. Forecasters stated they normally experience

higher mental workload during severe weather event.

Effort also contributed significantly to overall mental

workload, mainly due to interacting with AWIPS II on

one screen and the PHI tool on the other screen. This

amount of workload was due to a limitation in the ex-

perimental setup. This result does lend some insight into

tracking similar locations across multiple displays or

software windows. A design recommendation would be

cohesive location identification across displays or a

software link to quickly correlate locations. This would

help provide a truer testing environment in future soft-

ware development.

Mental workload associated with tornado hazard was

more than 10 points higher than those of lightning or

severe thunderstorm hazards. The tornado PHI objects

were much smaller geographically and there was no

tornado automation available. Forecasters carefully ex-

amined areas of tornadic potential and used ellipse or

TABLE 2. Mental workload by hazard and case (out of 100).

Severe thunderstorm Tornado Lightning

Case 1 (multiple large supercells with tornado) 39.2 72.1 57.5

Case 2 (merging supercells with tornado) 44.8 62.2 44.4

Case 3 (dispersed pulse severe thunderstorms) 48.1 39.8 38.9

FIG. 12. Automated blue suggestion object for merging or splitting storm objects. This provides feedback to users

when the automation suggests a merge or split of an object a forecaster has edited.
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circle drawing tools to create tornado PHI objects. The

sizes of all the PHI objects varied, but generally tornado

objects were less than half the size of severe objects;

depicting a more spatially specific objects may lead to

higher workload.

b. Formulating PHI in the new paradigm

Forecasters discussed that formulating PHI in the new

paradigm was a contributing factor to mental workload.

According to forecasters’ debriefs, the new PHI para-

digm involved an increased level of interrogation of in-

dividual storms and increased situational awareness of

all storms. Maintaining PHI objects required frequent

updating and monitoring. Based on storm analysis,

assigning a probability was a challenging aspect of the

new paradigm. With the current static and deterministic

weather warning system, forecasters have extensive ex-

perience making the binary decision to warn or not

warn. The new PHI tool challenged forecasters to think

of communicating threat risk in terms of probability.

This challenge involves more than just assigning a single

probability, but also shows how that probability will

evolve over the duration of the PHI threat object.

Additionally, this new paradigm allows forecasters to

start communicating threat information to end users

even when a hazard is subsevere and is not at a threat

level for which they would normally produce a warning.

This ability commanded more awareness of weather

development before a storm reached severe criteria.

c. Use of automated guidance

Forecasters rely on first guess guidance from auto-

mated objects to initiate PHI objects, the majority of the

time. Only 5% of the time forecasters created com-

pletely manual objects (this excludes tornado, which did

not have automated guidance). Once a forecaster man-

ually took over an aspect of automation, that aspect

could not be returned to automation and the forecaster

had to maintain it for the remainder of the scenario, or

until the object expired or was ended by the forecaster.

This was also true for manually created objects; once a

forecaster created a manual object, they were respon-

sible for all aspects of that object for the lifetime of the

object. Forecasters also had the option to delete an ob-

ject and allow the automation to replace it with an au-

tomatically generated object.

d. Use of automation

The automated objects for severe thunderstorm and

lightning helped forecasters prioritize their interroga-

tion. Forecasters stated in NASA-TLX discussions that

they would focus on the automated objects with higher

probabilities first and those objects were often the most

important storms. Their statements were supported by

their frequent utilization of automated objects. Forecasters

used automated objects the majority of the time to initiate

objects and issue updates.

Forecasters found that, in some situations, the auto-

mated guidance had difficulty accurately tracking the

motion and size of the storm. In these situations, fore-

casterswere required tomaintain amanual control of some

objects. Manual override of automated objects provided

users with greater control, but increased mental workload

resulted because the user was required to maintain the

object for the rest of its duration.A ‘‘return to automation’’

function was included in the following year’s prototype

design to relieve forecasters’ hesitation to take over auto-

mated objects and reduce themental workload of handling

many low automation-level objects (Karstens et al. 2018).

Forecasters stated in debriefs that they could com-

fortably manage 4–5 objects at a time. Table 1 shows

unique object numbers of up to 14 lightning hazard ob-

jects for a weather scenario. However, this does not mean

forecasters were interacting with these objects continu-

ously during the event. Forecasters updated some objects

many times and some objects once. Working with mul-

tiple objects required efforts in maintaining situational

awareness of these objects, which lead to increased

mental workload. Meanwhile, frequent updates on ob-

jects also increased mental workload.

One of the issues that the forecasters identified was a

lack of notification or feedback when the automation

would split an object into two objects or merge two ob-

jects into one object, thus losing the history of forecaster

discussions added to PHI objects. Forecaster 6 stated,

‘‘there were some bugs, such as issued objects being

merged into auto objects, and thus disappearing.’’ During

week 2 of the experiment, researchers implemented a

blue ‘‘suggested’’ object (Fig. 12). When the automation

suggested a merge or split, forecasters could accept the

suggestion and choose to link historical data or block the

suggestion. This revision gave forecasters more control

over the automated objects, and forecasters subsequently

considered these changes favorably.

e. Creating PHI objects

Forecasters liked the ability to communicate information-

rich warning products quickly via the PHI prototype soft-

ware. The PHI paradigm allows accurate threat tracking

and the ability to quickly provide updates. Forecasters

would triage storms to identify the most significant

storms and quickly issue a PHI object, then complete a

more thorough analysis of storms with the possibility of

these storms becoming severe in the near future.

Another change in the PHI paradigm is continuous

update. There was no set update time; as soon as an
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object was updated, a forecaster could update it again

or move directly to another object. Traditionally, fore-

casters would issue a warning and provide any updates

through issuing a ‘‘Special Weather Statement.’’ The

PHI paradigm creates the opportunity for forecasters to

update a PHI object as frequently as they determine

necessary. The average frequency of update on any

managed PHI objects was 5.5min for severe thunder-

storm, 13.5min for tornado objects, and 5.5min for

lightning objects.

PHI attributes included a threat level as warning level or

advisory and a probability threshold for a legacy warning

to dropout. Forecasters spent considerable amount of time

choosing between warning level, advisory level, and de-

ciding legacy threshold, especially for tornado. These at-

tributes required forecasters to make a ‘‘binary’’ warning

decision along with providing the probabilistic forecast

within the PHI paradigm. This challenge increased with

the tornado threats, as tornado PHI objects were generally

covered a much smaller geographic area than current

tornadowarning polygons. Additionally, the potential for

loss of human life increased the importance of an accu-

rate forecast. Forecasters determined a probability, as a

percentage, for the PHI objects (current and future), and

assigned a confidence level (low–high) for their forecast.

The probability was a determination based on meteoro-

logical probability of storm impact, while confidence

was a subjective evaluation of a forecasters’ confidence in

the PHI objects. It was found that forecasters conflated

the two factors, probability, and confidence, as repre-

senting the same or a similar measurement (Eastern

Research Group 2016). If these two options conflicted

(i.e., a low probability and a high confidence), decision-

makers, such as emergency managers, were often con-

fused regarding the risk of threat. In PHI experiments in

later years, we decided to use forecaster confidence to

represent the probability (Karstens et al. 2018).

The current deterministic warning paradigm lacks

assigning probabilities of occurrence on the hazards. As

such, training could be developed to calibrate fore-

casters to probabilities of hazards given certain radar or

satellite-derived characteristics. Probability and proba-

bility trends could be mapped to certain kinds of storm

characteristics to aid forecasters in deciding how to

construct probability trends.

Forecasters often used the discussion box to describe

reasons for increasing, decreasing, or changing threat

probabilities. This often required reiterating threat attri-

butes from previous object issuance and the new devel-

opments in selected attributes. This reiteration caused

highermemory load and contributed to increases inmental

workload. Later revisions of the tool in following years

facilitated retrieval of previously issued PHI information.

5. Conclusions

The 2016 PHI prototype experiment was conducted as

part of the FACETs project to advance NWS hazardous

weather warning capabilities. Forecasters’ mental work-

load and task strategy were analyzed using the PHI

prototype tool to communicate hazardous weather in-

formation in a time-sensitive warning environment with

various hazardous weather situations. The PHI paradigm

challenged forecasters in forecasting probabilities over

duration of threat objects. Analysis showed that, in gen-

eral,mental workloadwasmanageable for forecasterswith

the help of automated guidance when working with mul-

tiple threats. Mental workload associated with tornado

threat was found to be higher than workload for severe

thunderstorm or lightning hazards. Mental demand and

Effort were found to be the highest mental workload

subdimensions.We propose that theseworkload issues can

be alleviated through better design of human-automation

interaction. System design limitations were found in lack

of return to automation function and confusion between

forecaster confidence and threat probability. Later revi-

sions of the PHI prototype tool addressed several work-

load and usability issues to continuously improve design of

the PHI tool within the FACETs framework (Karstens

et al. 2018).

Acknowledgments. The authors thank many people in

their support and development of the PHI prototype tool:

Gabe Garfield, Darrel Kingfield, Amy McGovern, Kodi

Nemunaitis-Berry, Holly Obermeier, Casandra Shivers,

Shadya Sanders, Justin Sieglaff, Mike Pavolonis, James

Hocker, Susan Jasko, Gina Eosco, Kim Klockow, Harold

Brooks, Robert Hoffman, Israel Jirak, and Greg Stumpf.

The authors also thank the participation of many NWS

forecasters, emergency managers, and broadcast meteo-

rologists for their valuable input, expertise, and feedback

for further improvement. This study was supported by

Grants NOAA-OAR-OWAQ-2015-2004230, OAR-

USWRP-R2O FACETs PoW, and NAISNWS4680019.

REFERENCES

Akyeampong, J., S. Udoka, G. Caruso, and M. Bordegoni, 2014:

Evaluation of hydraulic excavator human-machine interface

concepts using NASA-TLX. Int. J. Ind. Ergon., 44, 374–382,
https://doi.org/10.1016/j.ergon.2013.12.002.

Boyatzis, R. E., 1998:TransformingQualitative Information: Thematic

Analysis and Code Development. Sage Publ., Inc., 184 pp.

Braun, V., and V. Clarke, 2006: Using thematic analysis in psychol-

ogy. Qual. Res. Psychol., 3, 77–101, https://doi.org/10.1191/

1478088706qp063oa.

Burigat, S., and L. Chittaro, 2016: Passive and active navigation

of virtual environments vs. traditional printed evacuation

maps: A comparative evaluation in the aviation domain.

1520 WEATHER AND FORECAST ING VOLUME 35

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/16/21 08:48 PM UTC

https://doi.org/10.1016/j.ergon.2013.12.002
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa


Int. J. Hum. Comput. Stud., 87, 92–105, https://doi.org/

10.1016/j.ijhcs.2015.11.004.

Calhoun, K. M., and Coauthors, 2018: Cloud-to-ground lightning

probabilities and warnings within an integrated warning team.

Special Symp. on Impact-Based Decision Support Services,

Austin, TX, Amer. Meteor. Soc., 4.4, https://ams.confex.com/

ams/98Annual/webprogram/Paper329888.html.

Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and A. K. Heidinger,

2013: Evolution of severe and nonsevere convection inferred

fromGOES-derived cloud properties. J. Appl. Meteor. Climatol.,

52, 2009–2023, https://doi.org/10.1175/JAMC-D-12-0330.1.

——, ——, ——, and D. T. Lindsey, 2014: An empirical model for

assessing the severe weather potential of developing convec-

tion. Wea. Forecasting, 29, 639–653, https://doi.org/10.1175/

WAF-D-13-00113.1.

——, and Coauthors, 2018: The NOAA/CIMSS ProbSevere model:

Incorporation of total lightning and validation.Wea. Forecasting,

33, 331–345, https://doi.org/10.1175/WAF-D-17-0099.1.

Eastern Research Group, 2016: NWS hazard simplification project:

Engagement at NOAA’s 2016 Hazardous Weather Testbed to

Collect Feedback on PrototypesDeveloped at the 2015HazSimp

Workshop. EasternResearchGroup,Arlington, VA, Tech.Rep.,

32 pp., https://www.weather.gov/media/hazardsimplification/

Final_HazSimp%20Testbed%20Report.pdf.

Finomore, V., T. Shaw, J. Warm, G. Matthews, and D. Boles, 2013:

Viewing the workload of vigilance through the lenses of the

NASA-TLX and the MRQ. Hum. Factors, 55, 1044–1063,

https://doi.org/10.1177/0018720813484498.

Friday, E. W., 1994: The modernization and associated re-

structuring of the National Weather Service: An overview.

Bull. Amer. Meteor. Soc., 75, 43–52, https://doi.org/10.1175/

1520-0477(1994)075,0043:TMAARO.2.0.CO;2.

Grier, R. A., 2015: How high is high? Ameta-analysis of NASA-TLX

global workload scores. Proc. Hum. Factors Ergon. Soc. Annu.

Meet., 59, 1727–1731, https://doi.org/10.1177/1541931215591373.

Guest, G., K. M. MacQueen, and E. E. Namey, 2012: Applied

Thematic Analysis. Sage Publishing, 320 pp.

Hart, S., 2006: NASA-task load index (NASA-TLX); 20 years later.

Proc. Hum. Factors Ergon. Soc. Annu. Meet., 50, 904–908,

https://doi.org/10.1177/154193120605000909.

——, andL. E. Staveland, 1988:Development of NASA-TLX (task

load index): Results of empirical and theoretical research.

Human Mental Workload, P. A. Hancock and N. Meshkati,

Eds., Advances in Psychology, Vol. 52, North-Holland,

139–183, https://doi.org/10.1016/S0166-4115(08)62386-9.

Hoffman, R. R., S. V. Deal, S. Potter, and E. M. Roth, 2010: The

practitioner’s cycles, Part II: Solving envisioned world prob-

lems. IEEE Intell. Syst., 25, 6–11, https://doi.org/10.1109/

MIS.2010.89.

Hooey, B. L., D. B. Kaber, J. A. Adams, T. W. Fong, and B. F.

Gore, 2018: The underpinnings of workload in unmanned

vehicle systems. IEEE Trans. Hum. Mach. Syst., 48, 452–467,
https://doi.org/10.1109/THMS.2017.2759758.

Karstens, C. D., and Coauthors, 2015: Evaluation of a probabilistic

forecasting methodology for severe convective weather in

the 2014 Hazardous Weather Testbed. Wea. Forecasting, 30,
1551–1570, https://doi.org/10.1175/WAF-D-14-00163.1.

——, and Coauthors, 2018: Development of a human–machinemix

for forecasting severe convective events.Wea. Forecasting, 33,

715–737, https://doi.org/10.1175/WAF-D-17-0188.1.

Kuhlman, K. M., T. M. Smith, G. J. Stumpf, K. L. Ortega, and K. L.

Manross, 2008: Experimental probabilistic hazard information

in practice: Results from the 2008 EWP spring program. 24th

Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor.

Soc., 8A.2, https://ams.confex.com/ams/pdfpapers/142027.pdf.

Meyer, T., K. M. Kuhlman, D. M. Kingfield, and D. J. Gagne II,

2016: Using random forest technique to create cloud-to-

ground lightning probabilities. 28th Conf. on Severe Local

Storms, Portland, OR, Amer. Meteor. Soc., 146, https://

ams.confex.com/ams/28SLS/webprogram/Paper301841.html.

Meyer, W. B., 2003: Marlene Bradford: Scanning the skies: A his-

tory of tornado forecasting. Isis, 94, 779–780, https://doi.org/

10.1086/386500.

Rothfusz,L.P., C.Karstens, andD.Hilderband, 2014:Next-Generation

Severe Weather Forecasting and Communication. Amer.

Geophys. Union, accessed 23 February 2017, https://eos.org/

science-updates/next-generation-severe-weather-forecasting-

communication.

——, T. M. Smith, and C. D. Karstens, 2015: Forecasting a

Continuumof Environmental Threats (FACETs): The science

and strategic implementation plan for a watch/warning para-

digm change. Proc. Third Symp. on Building a Weather-Ready

Nation: Enhancing Our Nation’s Readiness, Responsiveness,

and Resilience to High Impact Weather Events, Phoenix, AZ,

Amer. Meteor. Soc., 6.4, https://ams.confex.com/ams/95Annual/

webprogram/Paper266005.html.

Stanton, N., P. Salmon, and L. Rafferty, 2013: Human Factors

Methods: A Practical Guide for Engineering and Design.

Ashgate Publishing Ltd., 592 pp.

Stern,A.D., 2020:NationalWeather Service Instruction 80-303.NOAA/

NWS/Department of Commerce, 59 pp., http://www.nws.noaa.gov/

directives/sym/pd08003003curr.pdf.

Stumpf, G. J., T. M. Smith, K. Manross, and D. L. Andra, 2008: The

experimental warning program 2008 spring experiment at the

NOAA Hazardous Weather Testbed. 24th Conf. on Severe

Local Storms, Savannah,GA,Amer.Meteor. Soc., 8A.1, https://

ams.confex.com/ams/24SLS/techprogram/paper_141712.htm.

Trapsilawati, F., C. D. Wickens, X. Qu, and C.-H. Chen, 2016:

Benefits of imperfect conflict resolution advisory aids for fu-

ture air traffic control. Hum. Factors, 58, 1007–1019, https://

doi.org/10.1177/0018720816655941.

Varouhakis, J., 2007: recordmydesktop. Accessed 3 March 2017,

http://recordmydesktop.sourceforge.net.

Walters, C., and P. J. Webb, 2017: Maximizing efficiency and reducing

robotic surgery costs using the NASA task load index.AORN J.,

106, 283–294, https://doi.org/10.1016/j.aorn.2017.08.004.

Wickens, C. D., S. E. Gordon Becker, Y. Liu, and J. D. Lee, 2004:

An Introduction to Human Factors Engineering. 2nd ed.

Prentice Hall, 608 pp.

Wolfe, J. P., 2014: An open source approach to communicating

weather risks. 10th Free and Open Source (FOSS4G) Conf.,

Portland, OR, FOSS4G, Open Source Geospatial Foundation

(OSGeo), https://doi.org/10.5446/31617https://av.tib.eu/media/

31617.

Yan, S., C. C. Tran, Y. Chen, K. Tan, and J. L. Habiyaremye, 2017:

Effect of user interface layout on the operators’ mental

workload in emergency operating procedures in nuclear

power plants. Nucl. Eng. Des., 322, 266–276, https://doi.org/

10.1016/j.nucengdes.2017.07.012.

AUGUST 2020 JAMES ET AL . 1521

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/16/21 08:48 PM UTC

https://doi.org/10.1016/j.ijhcs.2015.11.004
https://doi.org/10.1016/j.ijhcs.2015.11.004
https://ams.confex.com/ams/98Annual/webprogram/Paper329888.html
https://ams.confex.com/ams/98Annual/webprogram/Paper329888.html
https://doi.org/10.1175/JAMC-D-12-0330.1
https://doi.org/10.1175/WAF-D-13-00113.1
https://doi.org/10.1175/WAF-D-13-00113.1
https://doi.org/10.1175/WAF-D-17-0099.1
https://www.weather.gov/media/hazardsimplification/Final_HazSimp%20Testbed%20Report.pdf
https://www.weather.gov/media/hazardsimplification/Final_HazSimp%20Testbed%20Report.pdf
https://doi.org/10.1177/0018720813484498
https://doi.org/10.1175/1520-0477(1994)075<0043:TMAARO>2.0.CO;2
https://doi.org/10.1175/1520-0477(1994)075<0043:TMAARO>2.0.CO;2
https://doi.org/10.1177/1541931215591373
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1109/MIS.2010.89
https://doi.org/10.1109/MIS.2010.89
https://doi.org/10.1109/THMS.2017.2759758
https://doi.org/10.1175/WAF-D-14-00163.1
https://doi.org/10.1175/WAF-D-17-0188.1
https://ams.confex.com/ams/pdfpapers/142027.pdf
https://ams.confex.com/ams/28SLS/webprogram/Paper301841.html
https://ams.confex.com/ams/28SLS/webprogram/Paper301841.html
https://doi.org/10.1086/386500
https://doi.org/10.1086/386500
https://eos.org/science-updates/next-generation-severe-weather-forecasting-communication
https://eos.org/science-updates/next-generation-severe-weather-forecasting-communication
https://eos.org/science-updates/next-generation-severe-weather-forecasting-communication
https://ams.confex.com/ams/95Annual/webprogram/Paper266005.html
https://ams.confex.com/ams/95Annual/webprogram/Paper266005.html
http://www.nws.noaa.gov/directives/sym/pd08003003curr.pdf
http://www.nws.noaa.gov/directives/sym/pd08003003curr.pdf
https://ams.confex.com/ams/24SLS/techprogram/paper_141712.htm
https://ams.confex.com/ams/24SLS/techprogram/paper_141712.htm
https://doi.org/10.1177/0018720816655941
https://doi.org/10.1177/0018720816655941
http://recordmydesktop.sourceforge.net
https://doi.org/10.1016/j.aorn.2017.08.004
https://doi.org/10.5446/31617
https://av.tib.eu/media/31617
https://av.tib.eu/media/31617
https://doi.org/10.1016/j.nucengdes.2017.07.012
https://doi.org/10.1016/j.nucengdes.2017.07.012

